等比数列的前n项和Sn=k*(3^n)+1,则k的值为

问题描述:

等比数列的前n项和Sn=k*(3^n)+1,则k的值为

Sn=(k*3^n)+1,
那么S(n-1)=(k*3^)+1,
n≥2时,Sn-S(n-1)=An=k(3^n-3^),
A1=k*(3-1)=2k,
又S1=A1=(K*3^1)+1,
则2k=(K*3^1)+1,
k=-1.