在ΔABC中abc分别为角ABC的对边,已知c=7/2,ΔABC的面积为3√3/2,tanA+tanB=√3tanAtanB-√3,求a+b的值

问题描述:

在ΔABC中abc分别为角ABC的对边,已知c=7/2,ΔABC的面积为3√3/2,tanA+tanB=√3tanAtanB-√3,求a+b的值

tanA+tanB=√3tanAtanB-√3tanA+tanB=-√3(1-tanAtanB)(tanA+tanB)/(1-tanAtanB)=-√3=tan(A+B)=-tanC所以∠C=60°SΔABC=0.5*a*b*sinC=3√3/2,即a*b=6由余弦定理:3.5^2=a^2+b^2-2abcosC=a^2+b^2-ab=(a+b)^2-3ab=(a+...