实数m,n 分别满足5m2+10m+1=0,n2+10n+5=0,且mn不等于1 求(mn+5m+1)/n的值

问题描述:

实数m,n 分别满足5m2+10m+1=0,n2+10n+5=0,且mn不等于1 求(mn+5m+1)/n的值

n^2+10n+5=0两边除n^25/n^2+10/n+1=05(1/n)^2+10*(1/n)+1=05m^2+10m+1=0所以1/n和m是方程5x^2+10x+1=0的根所以m+1/n=-2,m*1/n=1/5(mn+5m+1)/n=m+5m/n+1/n=(m+1/n)+5*(m/n)=-2+5*1/5=-1