过点p(2,0)的直线与圆x^2+y^2=2交于AB亮点,设M是线段AB的中点,求点M的轨迹方程
问题描述:
过点p(2,0)的直线与圆x^2+y^2=2交于AB亮点,设M是线段AB的中点,求点M的轨迹方程
答
设点A(x1,y1)B(x2,y2)则x1²+y1²=2x2²+y2²=2两式相减x1²-x2²+y1²-y2²=0(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0M为中点设坐标为(x,y)那么有(y-0)/(x-2)=(y2-y1)/(x2-x1)且x1+...