在等差数列,a1=-7,a7=-4,则数列an的前n项和Sn的最小值为
问题描述:
在等差数列,a1=-7,a7=-4,则数列an的前n项和Sn的最小值为
答
a1=-7,
a7=a1+6d=-4
→d=1/2
an=a1+(n-1)xd=-7+(n-1)/2=(n-15)/2
sn=(a1+an)n/2
=(n-29)n/4
=1/4(n^2-29n)
由 二次函数开口向上有最小值
可知在n=29/2时有最小值
又因为n为整数
所以n=14,15
sn最小值为-52,5什么-52,5最小值是-52吗(14-29)*14/4 = -52.5(15-29)*15/4 = -52.5Sn最小值=-52.5