若a+b+c=0,求(bc分之a^2)+(ac分之b^2)+(ab分之c^2)的值
问题描述:
若a+b+c=0,求(bc分之a^2)+(ac分之b^2)+(ab分之c^2)的值
答
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0
故a^3+b^3+c^3=3abc,所求式通分后等于(a^3+b^3+c^3)/(abc)=3abc/(abc)=3.
答
a^2/(bc)=(b+c)^2/(bc)=b/c+c/b+2b^2/(ac)=(a+c)^2/(ac)=a/c+c/a+2c^2/(ab)=(b+a)^2/(ab)=b/a+a/b+2三式相加得:原式=(b/c+a/c)+(c/b+a/b)+(c/a+b/a)+6=(b+a)/c+(c+a)/b+(c+b)/a+6=(...