∫﹙lnx-1﹚/﹙x²﹚dx

问题描述:

∫﹙lnx-1﹚/﹙x²﹚dx

用分部积分法.
∫(lnx-1)/x²dx = ∫(lnx-1)d( -1/x) = - (lnx-1)/x + ∫1/x * 1/x dx
=- (lnx-1)/x + ∫ 1/x^2 dx = - (lnx-1)/x - 1/x + C
=-(lnx)/x+C