x>1,求y=x+16/√x-1的min
问题描述:
x>1,求y=x+16/√x-1的min
答
y = x + 16/√(x-1)
= (x - 1) + 8/√(x-1) + 8/√(x-1) + 1
≥ 3× ³√[(x - 1)× 8/√(x-1)× 8/√(x-1)] + 1
= 3×4 + 1
= 13
当且仅当 x - 1 = 8/√(x-1),即 x = 5 时等号成立
所以 最小值是 13