x+y=4,求(x+1/x)(y+1/y)的min

问题描述:

x+y=4,求(x+1/x)(y+1/y)的min
x,y属于正数

(x+1/x)(y+1/y)=(x^2+1)(y^2+1)/xy=[(xy)^2+(x^2+y^2)+1]/xy=[(xy)^2+(x+y)^2-2xy+1]/xy=[(xy)^2+17-2xy]/xy=xy+17/xy -2≥2√17-2当且仅当xy=17/xy,xy=√17时取等号故最小值是2√17-2