如图,在△ABC中,CD,BE分别是AB,AC边上的中线,延长CD到F,使FD=CD,延长BE到G,使EG=BE,那么AF与AG是否相等?F,A,G三点是否在一条直线上?说明理由.
问题描述:
如图,在△ABC中,CD,BE分别是AB,AC边上的中线,延长CD到F,使FD=CD,延长BE到G,使EG=BE,那么AF与AG是否相等?F,A,G三点是否在一条直线上?说明理由.
答
AF=AG,F,A,G三点在一条直线上.理由:∵点D点E分别是AB,AC边上的中点,∴AD=BD,AE=CE.在△ADF和△BDC中AD=BD∠ADF=∠BDFDF=DC,∴△ADF≌△BDC(SAS),∴AF=BC,∠FAB=∠ABC.在△AEG和△CEB中AE=CE∠AEG...
答案解析:根据条件可以得出△ADF≌△BDC,△AEG≌△CEB,就可以得出AF=BC,∠FAB=∠ABC,AG=CB,∠GAC=∠ACB,就可以得出AF=AG,再由∠ABC+∠ACB+∠BAC=180°,就可以得出F,A,G三点在一条直线上.
考试点:全等三角形的判定与性质.
知识点:本题考查了三角形的中线的性质的运用,三角形内角和定理的运用,全等三角形的判定及性质的运用,解答时证明三角形的全等是关键.