(1+½)*(1-½)*(1+1/3)*(1-1/3)*.*(1+1/99)*(1-1/99)简便计算
问题描述:
(1+½)*(1-½)*(1+1/3)*(1-1/3)*.*(1+1/99)*(1-1/99)简便计算
答
(1+1/n)(1-1/n)=(n-1)(n+1)/n^2
所以
(1+1/2)(1-1/2)...(1+1/99)(1-1/99) = (1*3)/(2*2) * (2*4)/(3*3) * ...* (98*100)/(99*99) = 1/2 * 100/99 = 50/99