如图,已知正比例函数y=ax(a≠0)的图象与反比例函致 y=kx(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.(1)写出反比例函数和正比例函数的解析式;(2)试计算△COD的面积.
问题描述:
如图,已知正比例函数y=ax(a≠0)的图象与反比例函致 y=kx(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COD的面积.
答
图像没给,不知道k和a的取值范围,所以,就没法解啦!
答
:(1)由图知k>0,a>0.∵ 点A(-1,2-k2)在图象上, ∴ 2-k2 =-k,即 k2-k-2 = 0,解得 k = 2(k =-1舍去),得反比例函数为. 此时A(-1,-2),代人y = ax,解得a = 2,∴ 正比例函数为y = 2x.反比例为...