过⊙:x2+y2=2外一点P(4,2)向圆引切线,(1)求过点P的圆的切线方程;(2)若切点为P1,P2,求过切点P1,P2的方程
问题描述:
过⊙:x2+y2=2外一点P(4,2)向圆引切线,(1)求过点P的圆的切线方程;(2)若切点为P1,P2,求过切点P1,P2的方程
答
假设切线方程为y=kx+b经过(4,2)所以得y=kx+2-4k即y-kx+4k-2=0此直线和圆相切,所以圆心到直线的距离等于半径,(4k-2)/√(1+k^2)=√2所以求得k1=1,k2=1/7,带入y-kx+4k-2=0就求出来❶设切点分别为(x1,x1-2),...