用数学归纳法证明不等式(1+1/3)(1+1/5)...(1+1/2n+1)>2n+1/2时,则n的最小值n0为

问题描述:

用数学归纳法证明不等式(1+1/3)(1+1/5)...(1+1/2n+1)>2n+1/2时,则n的最小值n0为

括号内第二项是分数,分母递增.第一个括号内的分数分母是3
2n0+1=3
2n0=2
n0=1
n的最小值n0是1.