数列an为等比数列,若a1+a8=387,a4*a5=1152,则此数列的通项an为

问题描述:

数列an为等比数列,若a1+a8=387,a4*a5=1152,则此数列的通项an为

a1+a8=a1+a1*q^7 = 387 即 a1*q7 = 387 - a1................1
a4*a5=a1*q^3*a1*q^4 = 1152 即 a1 * a1 *q^7 = 1152..............2
1式代如2
a1 * (387-a1) = 1152
a1^2 - 387*a1 + 1152 = 0
a1=3 , a1=384
代入1式,得
q=2 , q=1/2
∴an = 3 * 2^(n-1) , an = 384 / 2^(n-1)

首项为3公比为2 或者首项为384公比为1/2

a1+a8=a4+a5=387
a4*a5=1152
a4=3 a5=384或a4=384 a5=3
所以an=3(128)^(n-4)或384(128)^(4-n)

an=(3乘以2的n-1次方)或(384乘以二分之一的n-1次方)