已知数列{an}是等差数列,a1=1,公差为2,又已知数列{bn}为等比数列,且b1=a1,b2(a2-a1)=b1,求数列{an},{bn}的通项公式 2“设Cn=an/bn,求{CN}的前N项和Sn

问题描述:

已知数列{an}是等差数列,a1=1,公差为2,又已知数列{bn}为等比数列,且b1=a1,b2(a2-a1)=b1,求数列{an},{bn}的通项公式 2“设Cn=an/bn,求{CN}的前N项和Sn

1.a1=1,a2=3,所以an=2n-1b1=1,b2=0.5,所以an=(0.5)^(n-1)=2^(1-n)2.Cn=an/bn=(2n-1)*2^(n-1)Sn=1*2^0+3*2^1+5*2^2+……+(2(n-1)-1)*2^((n-1)-1)+(2n-1)*2^(n-1).式子12Sn=1*2^1+3*2^2+5*2^3+……+(2(n-1)-1)*2^(n-1)...