如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.(1)求这个二次函数的解析式;(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.
问题描述:
如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式;
(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.
答
(1)∵二次函数y=-x2+bx+3的图象经过点A(-1,0),∴0=-1-b+3,得b=2,(1分)∴二次函数的解析式为y=-x2+2x+3;(2分)(2)由(1)得这个二次函数图象顶点B的坐标为(1,4);(3分)如图所示,过点B作BF⊥x轴,...
答案解析:(1)将A点坐标代入抛物线的解析式中,即可求出待定系数的值,由此可确定抛物线的解析式;
(2)可过B作BF⊥x轴于F,根据抛物线的解析式可求出B点的坐标,进而可求出BF、CF、BC的长,即可得到∠BCF即∠ACE的正弦值,进而可在Rt△ACE中,根据AC的长求出AE、CE的值;易证得△ADH∽△BCF,可设出点D的坐标,进而可表示出AH、DH的长,根据相似三角形得到的比例线段即可求出点D的坐标.(需要注意的是点D的位置有两种情况:①点D在线段AE上,②点D在AE的延长线上;要分类讨论.)
考试点:二次函数综合题.
知识点:此题是二次函数的综合类试题,涉及到二次函数解析式的确定、解直角三角形、相似三角形的判定和性质等重要知识点,同时还考查了分类讨论的数学思想,难度较大.