y=acosx+b最大值为1最小值是-3试确定f(x)=bsin(ax+π/3)单调区间
问题描述:
y=acosx+b最大值为1最小值是-3试确定f(x)=bsin(ax+π/3)单调区间
答
cosx的取值范围为[-1,1] cosx的最大值为1 最小值为-1
令a>0 则 y的最大值为1 最小值为-3 所以 a+b=1 -a+b=-3 得a=2 b=-1
令a