解方程(x-1)²=(2x-1)² x²-2x+1=4 x²=4x

问题描述:

解方程(x-1)²=(2x-1)² x²-2x+1=4 x²=4x

(x-1)²=(2x-1)²
x-1=2x-1 x-1=-(2x-1)
∴-x=0 3x=2
x=0 x=2/3

x²-2x+1=4
(x-1)²=4
∴x-1=2 x-1=-2
∴x=3 或x=-1

x²=4x
x²-4x=0
x(x-4)=0
∴x=0 x=4

(x-1)²=(2x-1)²
(2x-1)²-(x-1)²=0
[(2x-1)+(x-1)][(2x-1)-(x-1)]=0
x(3x-2)=0
x1=0,x2=2/3
x²-2x+1=4
(x-1)²=4
x-1=±2
x=1±2
x1=3,x2=-1
x²=4x
x²-4x=0
x(x-4)=0
x1=0,x2=4

由4x²=4x可知x=0或者x=1,分两种情况讨论,当x=0时,(x-1)²=(2x-1)² x²-2x+1=1,4x²=4x=0显然方程不成立;当x=1时,方程均成立。故方程的解为x=1。

  1. (x-1)²=(2x-1)²

    x-1=2x-1或x-1=-2x+1

    x=0或x=2/3

  2. x²-2x+1=4

    (x-1)^2=2

    x-1=±2

    x=3或-1

  3. x^2=4x

    x=0或x=4

(x-1)²=(2x-1)²(x-1)²-(2x-1)²=0(x-1+2x-1)(x-1-2x+1)=0x(3x-2)=0x1=0 x2=3/2x²-2x+1=4(x-1)²=4x-1=±2x=3或x=-1x²=4xx²-4x=0x(x-4)=0x1=0 x2=4在右上角点击【评价...