数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,求k的取值范围.

问题描述:

数列{an}中,an=n^2-kn,若对任意的正整数n,an≥a3都成立,求k的取值范围.
为何K/2的范围不在3到4之间,而是2.5到3.5之间呢?

an=n^2-kn=(n-k/2)^2-k^2/4
因为对任意的正整数n,an≥a3都成立
所以a3是最小值
所以k/2应该大于等于2.5,小于等于3.5
即5