已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( )A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)
问题描述:
已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( )
A. [-4,4]
B. (-4,4)
C. (-∞,4)
D. (-∞,-4)
答
当△=m2-16<0时,即-4<m<4,显然成立,排除D
当m=4,f(0)=g(0)=0时,显然不成立,排除A;
当m=-4,f(x)=2(x+2)2,g(x)=-4x显然成立,排除B;
故选C.
答案解析:对函数f(x)判断△=m2-16<0时一定成立,可排除D,再对特殊值m=4和-4进行讨论可得答案.
考试点:一元二次不等式的应用.
知识点:本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.