已知函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,正数数列{an}满足a1=1,f(an+an+1)-g(an+1an+an2)=1.(1)求{an}的通项公式;(2)若{an}的前n项和为Sn,求Sn.

问题描述:

已知函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,正数数列{an}满足a1=1,f(an+an+1)-g(an+1an+an2)=1.
(1)求{an}的通项公式;
(2)若{an}的前n项和为Sn,求Sn

∵函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,
∴b=0,c=0
∴f(x)=3x2+1 g(x)=5x
∵f(an+an+1)-g(anan+1+an2)=1
∴整理得(3an+1-2an)(an+an)=0
∵正数数列
∴3an+1-2an=0,即

an+1
an
=
2
3

∴数列{an}是以1为首项,
2
3
为公比的等比数列
∴通项公式an=(
2
3
n-1
∴Sn=3[1-(
2
3
n]
答案解析:先根据函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,判断b=0,c=0进而可得函数f(x)和g(x)的解析式,进而根据f(an+an+1)-g(anan+1+an2)=1求得
an+1
an
=
2
3
进而判断出数列{an}是以1为首项,
2
3
为公比的等比数列,则数列的通项公式可得,进而根据等比数列的求和公式求得Sn
考试点:数列递推式;数列的求和.
知识点:本题主要考查了用数列的递推式求得数列的通项公式和求和问题.解题的关键是通过函数解析式找到an+1和an的关系.