设O是三角形ABC所在平面外一点,G是三角形ABC的重心,向量OA=a,向量OB=b,向量OC=c,向量OG=Xa+Yb+Zc,求X,Y,
问题描述:
设O是三角形ABC所在平面外一点,G是三角形ABC的重心,向量OA=a,向量OB=b,向量OC=c,向量OG=Xa+Yb+Zc,求X,Y,
答
OG=OA+AG
AG=0.5(AB+AC)*2/3 因为重心是中线的交点,分中线比为2:1
然后AB,AC都用OA,OB,OC基础量来表示
最后得X=Y=Z=1/3
关键你要知道首尾相接字母的向量加减就比较简单了