关于x的实系数方程x^2+ax+2b=0的一根在区间(0,1)上,另一根在(1,2)上,则点(a,b)所在区域的面积多

问题描述:

关于x的实系数方程x^2+ax+2b=0的一根在区间(0,1)上,另一根在(1,2)上,则点(a,b)所在区域的面积多

设f(x)=x^2+ax+2b
f(x)=0的一个根在(0,1)中,另一个根在(1,2)中
则f(0)>0,f(1)0
即2b>0,1+a+2b0
b>0,b