已知函数f(X)=1/2cosX+sinxcosx-1/2sinx 求f(x)的最小正周期,对称轴方程
问题描述:
已知函数f(X)=1/2cosX+sinxcosx-1/2sinx 求f(x)的最小正周期,对称轴方程
答
f(x)=(1/2)(cosx)^2-sinxcosx-(1/2)(sinx)^2 ==(1/2)[(cosx)^2-(sinx)^2]-(1/2)2sinxcosx =(1/2)(cos2x-sin2x) =(√2/2)[cos2xcos(π/4)-sin2xsin(π/4)] =(√2/2)cos(2x+π/4) 1)周期T=2π/2=π 2)对称轴2x+π/4=kπ-->x=kπ/2-π/8 (k∈z) 追问: f(x)的单调区间是? 回答: 递减区间2kπ≤2x+π/4≤2π+π--->kπi-π/8≤x≤kπ+3π/8 递增区间2kπ-π≤2x+π/4≤2kπ--->kπ-5π/8≤x≤kπ-π/8