超级难题,求极限x趋于0求[(a+1/x)(b+1/x)(c+1/x)]的立方根-1/x上面这个的极限

问题描述:

超级难题,求极限
x趋于0

[(a+1/x)(b+1/x)(c+1/x)]的立方根-1/x
上面这个的极限

[(a+1/x)(b+1/x)(c+1/x)]的立方根-1/x=(a+1/x)^(1/3)(b+1/x)^(1/3)(c+1/x)^(1/3)-1/x=(1/x)[(1+ax)^(1/3)(1+bx)^(1/3)(1+cx)^(1/3)-1]=(1/x){[1+ax/3+o(x)][1+bx/3+o(x)][1+cx/3+o(x)]-1}=(1/x)[1+(a+b+c)x/3+o(x)-1...