一道数列证明题求证:对一切正整数n,1/(3-2)+1/(3²-2²)+1/(3³-2³)+…+1/(3^n-2^n)<3/2

问题描述:

一道数列证明题
求证:对一切正整数n,1/(3-2)+1/(3²-2²)+1/(3³-2³)+…+1/(3^n-2^n)<3/2

证明:设an=1/(3^n-2^n)
a1=1/(3-2)=14,即3^2>2^3,
设f(x)=3^x-2^(x+1) (x>2),则f'(x)>0,所以f(x)>f(2)>0,
故3^n>2^(n+1),即3^n-2^n>2^n,所以an>2^n,
即1/an