不论k为何值时,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过一定点,则这个定点坐标为______.
问题描述:
不论k为何值时,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过一定点,则这个定点坐标为______.
答
知识点:恒过一个定点,那么应把所给式子重新分配整理成左右都含k的等式.
由(2k-1)x-(k+3)y-(k-11)=0,
得:(2x-y)k-(x+3y)=k-11.
不论k为何值,上式都成立.
所以2x-y=1,x+3y=11,
解得:x=2,y=3.
即不论k为何值,一次函数(2k-1)x-(k+3)y-(k-11)=0的图象恒过(2,3).
答案解析:将一次函数(2k-1)x-(k+3)y-(k-11)=0,整理为(2x-y)k-(x+3y)=k-11,从而求得定点坐标.
考试点:一次函数图象上点的坐标特征.
知识点:恒过一个定点,那么应把所给式子重新分配整理成左右都含k的等式.