数列{an}满足a1=1,1/2an=1/2an+1(n∈N※),若a1a2+a2a3+...+anan+1>16/33,求n的取
问题描述:
数列{an}满足a1=1,1/2an=1/2an+1(n∈N※),若a1a2+a2a3+...+anan+1>16/33,求n的取
答
是1/2an=1/2a(n-1)+1吧两边同时乘以2得1/an=1/a(n-1)+2 那么(1/an)可看成等差数列a1=1 由次推出1/an=2n-1 an=1/(2n-1) a1*a2+a2*a3+...+an*an+1=1/1*3+1/3*5+.1/(2n-1)*(2n+1)>16/33 1/1*3+1/3*5+.1/(2n-1)*(2n+...