已知有理数xy满足(x²+y²)(x²+y²-1)-6=0,则x²+y²的值为
问题描述:
已知有理数xy满足(x²+y²)(x²+y²-1)-6=0,则x²+y²的值为
答
用整体法,把x^2+y^2看做一个整体t,相当于解一元二次方程,那么有t(t-1)-6=0;得t=-2(舍去,因为x^2+y^2>=0),t=3.
答
(x²+y²)(x²+y²-1)-6=0
(x²+y²)²-(x²+y²)-6=0
[(x²+y²)+2][(x²+y²)-3]=0
x²+y²=-2或x²+y²=3
答
设t=x²+y² t≥0则
(x²+y²)(x²+y²-1)-6=0
t(t-1)-6=0
t²-t-6=0
(t-3)(t+2)=0
t-3=0
t=3
所以x²+y²的值为3