抛物线y=ax^2+bx+c(a不等于0)的顶点坐标为(2,-1),并与y轴交于C(0,3),与x轴交于两点A.B设抛物线的对称轴与直线BC交于D,连AC,AD,求三角形ACD面积点E为直线bc上一动点,过E作Y轴平行线EF,与抛物线交于F,问是否存在点E使以D,E,F为顶点的三角形与三角形BCO相似,求E坐标

问题描述:

抛物线y=ax^2+bx+c(a不等于0)的顶点坐标为(2,-1),并与y轴交于C(0,3),与x轴交于两点A.B
设抛物线的对称轴与直线BC交于D,连AC,AD,求三角形ACD面积
点E为直线bc上一动点,过E作Y轴平行线EF,与抛物线交于F,问是否存在点E使以D,E,F为顶点的三角形与三角形BCO相似,求E坐标

首先求出抛物线的解析式,设抛物线的顶点式解析式为:y=m(x-2)^2-1,然后代入C点,求出m=1;整理得抛物线的解析式为y=x^2-4x+3,很容易求出与x轴的两个交点坐标为:A(1,0),B(3,0);D点坐标为(2,1);第二步:判断...