求由方程ye^x+lny=1所确定的隐函数y=y(x)的二阶导数(d^2y)/(dx^2)

问题描述:

求由方程ye^x+lny=1所确定的隐函数y=y(x)的二阶导数(d^2y)/(dx^2)

两边x求导得
y'e^x+ye^x+y'/y=0
y'=-ye^x/(e^x+1/y)=-y^2e^x/(ye^x+1)
y''=[(-2yy'e^x-y^2e^x)(ye^x+1)+y^2e^x(y'e^x+ye^x)]/(ye^x+1)^2