已知P是抛物线 y^2=2x上的一个动点,过P作圆(x-3)^2+y^2=1 的切线,切点分别为M、N,则/MN/ 的最小值是__________ 需说明详细过程
问题描述:
已知P是抛物线 y^2=2x上的一个动点,过P作圆(x-3)^2+y^2=1 的切线,切点分别为M、N,
则/MN/ 的最小值是__________ 需说明详细过程
答
设抛物线y^2=2x上的动点为P(a、b),则b^2=2a
圆(x-3)^2+y^2=1 ,圆心为C(3,0) ,半径为r=1
连接PC交MN于点E
将圆的方程变为:x^2+y^2-6x+8=0
则点P到圆C的切线长为
|PM|=|PN|
=√(a^2+b^2-6a+8)
=√(a^2+2a-6a+8)
=√(a^2-4a+8)
|PC|^2=|pm|^2+|CM|^2=a^2-4a+8+1=a^2-4a+9
由平面射影定理知:
|CM|^2=|PC|×|CE|
即1^2=[ √(a^2-4a+9)]×|CE|
∴|CE|^2=1/(a^2-4a+9)
|ME|^2=|CM|^2-|CE|^2=1-1/( a^2-4a+9) (a≥0)
∵a^2-4a+9=(a-2)^2+5≥5
∴|ME|^2 ≥4/5
∴|ME|≥2/√5
|MN|=2|ME|≥(4√5)/5
|MN|的最小值是(4√5)/5
答
当P到圆心的距离最小时,MN为最小值。
答
可设点P(2a²,2a).易知,圆C:(x-3)²+y²=1的圆心C(3,0),半径r=1.设PC与MN交于点H,易知,⊿MCH∽⊿PCM∴MH∶PM=MC∶PC∴MH=PM/PC又PM²=PC²-1∴MN=2√[1-(1/PC²)]∴问题可化为求PC²的...