已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
问题描述:
已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
答
..你是不是题目看错了啊 这个解不出来
答
方法①根据平均值不等式:x^2/(y+2z)+(y+2z)/9≥2√{[x^2/(y+2z)][(y+2z)/9]}=2x/3y^2/(z+2x)+(z+2x)/9≥2√{[y^2/(z+2x)][(z+2x)/9]}=2y/3z^2/(x+2y)+(x+2y)/9≥2√{[z^2/(x+2y)][(x+2y)/9]}=2z/3以上3式相加:x^2/...