已知三角形ABC中,BC=a,BC边上的高AH=h;矩形DEFG的顶点D、E在边BC上,顶点G、F分别在AB、AC上 设矩形的边DE的长为x,面积为y,求y关于x的函数解析式,并指出这个函数的定义域五班~妍...你认真一点好吗?
问题描述:
已知三角形ABC中,BC=a,BC边上的高AH=h;矩形DEFG的顶点D、E在边BC上,顶点G、F分别在AB、AC上 设矩形的边DE的长为x,面积为y,求y关于x的函数解析式,并指出这个函数的定义域
五班~妍...你认真一点好吗?
答
y=ax+xx
答
在三角形ABC中,BC=a,高AH=h,设AH交GF于K,DE=x,KH=m,显然GD=EF=m
容易知道△AGF∽△ABC,而相似三角形对应高的比等于相似比,
所以可得:AK:AH=GF:BC
即:(h-m):h=x:a
求出 m=(ah-hx)/a
所以
S矩形GDEF=GD*GF
=x(ah-hx)/a
即 y 关于x 的函数关系式是:
y=x(ah-hx)/a
即:y=(-x^2+ax)h/a
(x的取值范围是 0<x<a)
根据二次函数最大值公式知
当x=a/2时,S最大=ah/4
(即最大面积是三角形ABC面积的一半)