对负实数a,数4a+3,7a+7,a^2+8a+3依次成等差数列(1)求a的值;(2)若数列{an}满足an+1=a^(n+1)-2an(n∈N+),a1=m①求证数列{an/(-2)^n}是等差数列②求{an}的通项公式(3)在(2)的条件下,若对任意n∈N+,不等式a(2n+1)

问题描述:

对负实数a,数4a+3,7a+7,a^2+8a+3依次成等差数列
(1)求a的值;
(2)若数列{an}满足an+1=a^(n+1)-2an(n∈N+),a1=m
①求证数列{an/(-2)^n}是等差数列②求{an}的通项公式
(3)在(2)的条件下,若对任意n∈N+,不等式a(2n+1)

(1)由题意得2(7a+7)=4a+3+a^2+8a+3
解得a=-2
(2)两边同时除以(-2)^(n+1)
得an+1/(-2)^(n+1)=a^(n+1)/(-2)^(n+1)-an/(-2)^(n+1)把a=-2带入化简移向得
an+1/(-2)^(n+1)-an/(-2)^n=1令An=an/(-2)^n则An+1-An=1,所以数列{An}公差d=1的等差数列即数列{an/(-2)^n}公差d=1的等差数列。
因为a1=m带入An=an/(-2)^n得A1=-m/2又因为An=A1+(n-1)d
所以an/(-2)^n=-m/2+(n-1)*1=n-1-m/2移向得an=(n-1-m/2)*(-2)^n
(3)解不等式(2n+1-1-m/2)*(-2)^(2n+1)

1.
(4a+3)+(a^2+8a+3)=2(7a+7)
a^2-2a-8=0
(a+2)(a-4)=0
a=-2.
2.

a(n+1)=a^(n+1)-2an=(-2)^(n+1)-2an
a(n+1)=(-2)^(n+1)-2an
a(n+1)/(-2)^(n+1)=1-2an/(-2)^(n+1)
=1+an/(-2)^n
a(n+1)/(-2)^(n+1)-an/(-2)^n=1
所以an/(-2)^n是公差为1,首项为a1/(-2)=-m/2的等差数列;

因a(n+1)/(-2)^(n+1)-an/(-2)^n=1
所以
an/(-2)^n=a1/(-2)+(n-1)*1
=-m/2+n-1
an=(-m/2+n-1)(-2)^n.
3.
a(2n+1)=[-m/2+(2n+1)-1](-2)^(2n+1)
=[-m/2+2n](-2)^(2n+1)
a(2n-1)=[-m/2+(2n-1)-1](-2)^(2n-1)
=[-m/2+2n-2](-2)^(2n-1)
a(2n+1)<a(2n-1)
[-m/2+2n](-2)^(2n+1)<[-m/2+2n-2](-2)^(2n-1)
[-2m+8n](-2)^(2n-1)<[-m/2+2n-2](-2)^(2n-1)
-2m+8n>-m/2+2n-2
-3m/2+6n+2>0
n>(3m/2-2)/6
因n≥1,只要(3m/2-2)/6<1
所以
3m/2-2<6
m<16/3.