已知x>y>0,且xy=1,求 (x2+y2)/(x-y)的最小值 请用不等式的解法来解答
问题描述:
已知x>y>0,且xy=1,求 (x2+y2)/(x-y)的最小值 请用不等式的解法来解答
答
(x2+y2)/(x-y)= (x2+y2-2xy+2xy)/(x-y)因为xy=1,所以=[(x-y)^2+2]/(x-y)=(x-y)+2/(x-y)因为x>y>0所以(x-y)>0所以有不等式的定理知道(x-y)+2/(x-y)>=2根号下[(x-y)*2/(x-y)]=2根号2而此时(x-y)^2=2 符合上面的条件...