已知x,y属于(0,2),且xy=1,求2/(2-x)+4/(4-y)的最小值

问题描述:

已知x,y属于(0,2),且xy=1,求2/(2-x)+4/(4-y)的最小值

2/(2-x)+4/(4-y)=1/(1-x/2)+1/(1-y/4)因为公式:1/a+1/b≥4/(a+b)故:原式=2/(2-x)+4/(4-y)=1/(1-x/2)+1/(1-y/4)≥4/(2-x/2-y/4)因为xy=1,所以(x/2)·(y/4)=1/8≤1/4*(x/2+y/4)^2→x/2+y/4≥1/√2.所以,有:原...