如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为( )A. 24B. 38C. 46D. 50
问题描述:
如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为( )
A. 24
B. 38
C. 46
D. 50
答
(1)当斜边长为2时,斜边一定是小正方形的对角线,这样的线段有12条,每条这样的线段对应着两个等腰直角三角形,共有2×12=24(个). 同理(2)当斜边长为2时,共有6+2×4=14(个). (3)当斜边长为22时,共有2...
答案解析:以格点为端点的线段长度可取8个数值:1,2,2,3.以这些线段组成的等腰直角三角形的斜边有以下四种情况2,2,22,10;然后按斜边长分四类来进行计数即可.
考试点:等腰直角三角形.
知识点:(1)利用分类讨论的数学思想求解时,一定要做到分类既不重复,又不遗漏;(2)请读者尝试以下两种思路解答本题:①以等腰直角三角形的直角边的不同情况来分类讨论求解;②利用轴对称图形的对称性求解.