(根号2+1)2003次方*(根号2-1)2004次方=

问题描述:

(根号2+1)2003次方*(根号2-1)2004次方=

(√2+1)^2003x(√2-1)^2004
=[(√2+1)(√2-1)]^2003x(√2-1)
=1^2003x(√2-1)
=√2-1

原式=(根号2+1)2004次方*(根号2-1)2004次方/(根号2+1)=1/(根号2+1)=根号2-1

=[(根号2+1)*(根号2-1))2003次方*(根号2-1)=根号2-1

(根号2+1)2003次方*(根号2-1)2004次方=[(根号2+1)*(根号2-1)]2003次方*(根号2-1)=(2-1)2003次方*(根号2-1)=根号2-1

原式=((根号2+1)*(根号2-1))2003次方*(根号2-1)
=(1)2003次方*(根号2-1)
=根号2-1