求下列各曲线所围成的图形面积y=1/2x^2,x^2+y^2=8(两部分都要计算)答案是2pai+4/3,6pai-4/3
问题描述:
求下列各曲线所围成的图形面积
y=1/2x^2,x^2+y^2=8(两部分都要计算)
答案是2pai+4/3,6pai-4/3
答
抛物线y=1/2x^2与圆x^2+y^2=8相交于两点,坐标分别为(-2,2)与(2,2)。连接(-2,2),(0,0);连接(2,2),(0,0)。y=1/2x^2,x^2+y^2=8围成的上半部面积(小的那块)可以看成一个扇形面积和两条直线与抛物线围成的面积(两块,加上扇形,一共三块)之和。扇形面积为圆面积的1/4,等于2π,另外两块用积分很容易求,每块等于2/3,
这样一来整个上半部面积等于2π+4/3。
下半部面积为圆面积减去上半部面积,等于6π-4/3。
答
先算出这两了图像的交点,然后用积分算出面积.这两个式子联立方程组,算出交点(2,2)和(-2,2)如图所示,先求上面图形的面积(就是黑色和红色区域)因为是对称图形,所以只求红色面积就行了.积分应该从0积到2. 咱...