函数y=sinx+根号3倍cosx的最小正周期是?
问题描述:
函数y=sinx+根号3倍cosx的最小正周期是?
答
y=sinx+√3cosx
=2(1/2sinx+√3/2cosx)
=2(sinxcosπ/3+cosxsinπ/3)
=2sin(x+π/6)
所以最小正周期T=2π/1=2π
答
y=sinx+根号3 cosx
=2(1/2sinx+根号3/2cosx)
=2(sinxcosπ/4+cosxsinπ/4)
=2sin(x+π/4)
为正弦函数,最小正周期为2π