求数列1²-2²+3²-4²+5²-6²+……+99²-100²=

问题描述:

求数列1²-2²+3²-4²+5²-6²+……+99²-100²=

=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+……+(99-100)(99+100)
=(-1)×(1+2)+(-1)×(3+4)+(-1)×(5+6)+……+(-1)×(99+100)
=(-1)×(1+2+3+4+5+6+……+99+100)
=(-1)×【(1+100)×100÷2】
= -5050

1²-2²+3²-4²+5²-6²+……+99²-100²
=(1+2)x(1-2)+(3+4)x(3-4)+(5+6)x(5-6)+……+(99+100)x(99-100)
=-(1+2+3+4+5+6+……+99+100)
=-(1+100)×100÷2
=-5050

原式 = (1+2)(1-2) + (3+4)(3-4) +...+(99 +100)(99-100)
= - (3 + 7 + 11 + ...+ 199)
= - (3 + 199) × 50 / 2
= - 5050