设函数f(x)=2cos2x+sin2x+a(a∈R).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,π6]时,f(x)的最大值为2,求a的值,并求出y=f(x)(x∈R)的对称轴方程.
问题描述:
设函数f(x)=2cos2x+sin2x+a(a∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[0,
]时,f(x)的最大值为2,求a的值,并求出y=f(x)(x∈R)的对称轴方程. π 6
答
(1)f(x)=1+cos2x+sin2x+a=2sin(2x+π4)+1+a,∵ω=2,∴T=π,∴f(x)的最小正周期π;当2kπ-π2≤2x+π4≤2kπ+π2(k∈Z)时f(x)单调递增,解得:kπ-3π8≤x≤kπ+π8(k∈Z),则x∈[kπ-3π8,kπ+π...
答案解析:(1)函数f(x)解析式第一项利用二倍角的余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值代入周期公式即可求出函数的最小正周期;由正弦函数的单调递增区间为[2kπ-
,2kπ+π 2
](k∈Z)求出x的范围即为函数的递增区间;π 2
(2)由x的范围求出这个角的范围,利用正弦函数的单调性求出正弦函数的最大值,表示出函数的最大值,由已知最大值求出a的值即可,令这个角等于kπ+
(k∈Z),求出x的值,即可确定出对称轴方程.π 2
考试点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.
知识点:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,三角函数的周期性及其求法,以及正弦函数的单调性,熟练掌握公式是解本题的关键.