如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF.请回答下列问题:(1)求证:四边形ADEF是平行四边形;(2)当△ABC满足什么条件时,四边形ADEF是矩形.
问题描述:
如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF.
请回答下列问题:
(1)求证:四边形ADEF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADEF是矩形.
答
证明:(1)∵等边△ABD、△BCE、△ACF,∴DB=AB,BE=BC.又∠DBE=60°-∠EBA,∠ABC=60°-∠EBA,∴∠DBE=∠ABC.∴△DBE≌△CBA.∴DE=AC.又∵AC=AF,∴AF=DE.同理可证:△ABC≌△FCE,证得EF=AD.∴四边形ADEF...
答案解析:1、本题可根据三角形全等证得DE=AF,AD=EF,即可知四边形ADEF是平行四边形
2、要使四边形ADEF是矩形,必须让∠FAD=90°,则∠BAC=360°-90°-60°-60°=150°
考试点:平行四边形的判定;等边三角形的性质;矩形的判定.
知识点:此题主要考查了等边三角形的性质和平行四边形的判定.