tanα=4√3,cos(a+β)=11/14...a,β为锐角.求cosβ

问题描述:

tanα=4√3,cos(a+β)=11/14...a,β为锐角.求cosβ

tanα=4/3那么sinα=4/5 cosα=3/5,又因为cos(a+β)=11/14大于0...a,β为锐角那么sin(a+β)=5√3/14
cosβ=cos(α+β-α)=cos(a+β)cosα+sinαsin(a+β)=11/14乘以3/5+4/5乘以5√3/14 算出来就行了

a,β为锐角tanα=4√3=>sina=4√3cosa=>sin^2a=48cos^2a=>sina=4√3/7,cosa=1/7cos(a+β)=11/14=>sin(a+β)=5√3/14cosβ=cos[(a+β)-a]=cos(a+β)cosa+sin(a+β)sina=11/14*1/7+5√3/14*4√3/7=71/98...