已知tan(x-π/4)=2求(sin2x+cos2x)/(2cos方-3sin2x-1)
已知tan(x-π/4)=2求(sin2x+cos2x)/(2cos方-3sin2x-1)
解析,由于,tan(x-π/4)=2,根据公式tan2a=2tana/(1-tan²a)
故,tan2(x-π/4)=-4/3,由于tan2(x-π/4)=tan(2x-π/2)=-cot2x
也即是,cot2x=4/3=cos2x/sin2x
故,cos2x=(4sin2x)/3【1】
(sin2x+cos2x)/(2cos²x-3sin2x-1)
=(sin2x+cos2x)/(cos2x-3sin2x),把【1】代人,
化简可得:
原式=(7/3)/(-5/3)=-7/5
tan(x-45)=2
所以tanx=-3
tan2x=(2tanx)/(1-tan方x)=(-6)/(1-9)=3/4
(sin2x+cos2x)/(2cos方x-3sin2x-1)
=(sin2x+cos2x)/(1+cos2x-3sin2x-1)
=(sin2x+cos2x)/(cos2x-3sin2x)
分子分母同时除以cos2x,得
(tan2x+1)/(1-3tan2x)=(7/4)/(1-9/4)=-(7/5)
tan(x-π/4)=2
(tanx-1)/(1+tanx)=2
tanx-1=2+2tanx
-tanx=3
tanx=-3
(sin2x+cos2x)/(2cos²x-3sin2x-1)
=(2sinxcosx+cos²x-sin²x)/(2cos²x-6sinxcosx-cos²x-sin²x)
=(2sinxcosx+cos²x-sin²x)/(cos²x-6sinxcosx-sin²x)
分子分母同时除以cos²x得
=(2tanx+1-tan²x)/(1-6tanx-tan²x)
=(-6+1-9)/(1+18-9)
=(-14)/(10)
=-7/5
tanx
=tan[(x-π/4)+π/4]
=[tan(x-π/4)+tan(π/4)]/[1-tan(x-π/4)tan(π/4)]
=(2+1)/(1-2*1)
=-3
(sin2x+cos2x)/(2cos²x-3sin2x-1)
=(2sinxcosx+cos²x-sin²x)/(2cos²x-6sinxcosx-sin²x-cos²x)
=(2sinxcosx+cos²x-sin²x)/(cos²x-6sinxcosx-sin²x)
分子分母同时除以 cos²x
=(2tanx+1-tan²x)/(1-6tanx-tan²x)
=(-6+1-9)/(1+18-9)
=-14/10
=-7/5