已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=根号Sn+根号Sn-1(n≥2),求数列{an} 的通项公式
问题描述:
已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=根号Sn+根号Sn-1(n≥2),求数列{an} 的通项公式
答
∵Sn-Sn-1=√Sn+√Sn-1∴(√Sn)²-(√Sn-1)²=√Sn+√Sn-1(√Sn-√Sn-1)(√Sn+√Sn-1)=√Sn+√Sn-1∴√Sn-√Sn-1=1 (n≥2)∴√Sn是等差数列,公差为1,首项√S1=√a1=1∴√Sn=√S1+(n-1)×d=nSn=n²Sn-S...