1×2+2×3+3×4+……+47×48+48×49+49×50 怎样计算?
问题描述:
1×2+2×3+3×4+……+47×48+48×49+49×50 怎样计算?
答
类似于公式 1+2+3+……+n=(1/2)n(n+1),
有1×2+2×3+3×4+……+n(n+1)=(1/3)n(n+1)(n+2),
请看,n=1时:1×2=(1/3)×1×2×3;
n=2时:1×2+2×3=(1/3)×2×3×4=8;
n=3时:1×2+2×3+3×4=(1/3)×3×4×5=20;
……,那么,当n=49时
1×2+2×3+3×4+……+49×50 =(1/3)×49×50×51=41650。
答
1×2+2×3+3×4+……+47×48+48×49+49×50
=(1+1)*1+(1+2)*2(3+1)*3+.....+(48+1)48+(49+1)49
=1^2+1+2^2+2+……+49^2+(1+2+.....+49)
【1^2+2^2+……+n^2=n(n+1)(2n+1)/6
=1/6 * 49*(49+1)(49*2+1)+49*50/2
=41650
答
=1^2+1+2^2+2+……+49^2+49
=(1^2+2^2+……49^2)+(1+2+……+49)
=1/6 * 49*(49+1)(49*2+1)+49*50/2
=41650
【1^2+2^2+……+n^2=n(n+1)(2n+1)学过吗?】
答
数列的求和
=n(n+1)(n+2)/3
n=49
1×2+2×3+3×4+……+47×48+48×49+49×50
=49*50*51/3
=41650