计算1/1*2010+1/2*2009+1/3*2008+...+1/2010*1-2010/2011(1/1*2009+1/2*2008+...+1/2009*1)

问题描述:

计算1/1*2010+1/2*2009+1/3*2008+...+1/2010*1-2010/2011(1/1*2009+1/2*2008+...+1/2009*1)

由规律可知:
1/(1+√2) +1/(√2+√3)+1/(√3+√4)+...+1/(√2009+√2010)+1/(√2010+√2011)
=(√2 -1)/[(1+√2)(√2 -1)] +(√3-√2)/[(√2+√3)(√3-√2)]+(√4-√3)/[(√3+√4)(√4-√3)]+...
+(√2010-√2009)/[(√2009+√2010)(√2010+√2009)]
+(√2011-√2010)/[(√2010+√2011)(√2011+√2010)]
=(√2 -1)+(√3-√2)+(√4-√3)+...+(√2010-√2009)+(√2011-√2010)
=(√2011) -1